

International Journal of Theoretical & Applied Sciences, Special Issue-NCRTAST 8(1): 207-210(2016)

ISSN No. (Print): 0975-1718 ISSN No. (Online): 2249-3247

Some Fixed Point Theorem in Dislocated Metric Space

Madhu Shrivastava*, K. Qureshi** and A.D. Singh** *TIT Group of Institution, Bhopal, (Madhya Pradesh), India **Ret. Additional Director, Bhopal, (Madhya Pradesh), India ***Govt. M.V.M. College, Bhopal, (Madhya Pradesh), India

(Corresponding author: Madhu Shrivastava) (Received 11 April, 2016 Accepted 20 May, 2016) (Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: In this paper we established a common fixed point theorem for two pairs of weakly compatible maps in dislocated metric space, which generalizes and improves similar fixed point results.

I. INTRODUCTION

Fixed point theory is one of the most dynamic research subjects in non-linear science. In 1922, S. Banach proved a fixed point theorem for contraction mapping in metric space. In 2000, Hitzler [9] introduced the concept of dislocated metric space, a generalization of metric space and presented variants of Banach contraction principle in such space.

Bennani et al [] established two new common fixed point theorem for four self-maps on dislocated metric space, which improve the results of Panthi and Jha [7].Dislocated metric space plays very important role in topology, logical programming and in electronic engineering. C.T Age and J.N. Salunke [2], A. Isufati [1] established some important fixed point theorems in single and pair of mapping in single and pair of mapping in dislocated spaces.

II. PRELIMINARIES

Now we start with the following definitions, lemmas and theorems.

Definition 2.1 Let X be a non empty set and let $d : X \times X$ [0,) be a function satisfying the following conditions:

(i) d(x, y) = d(y, x)

(ii) d(x, y) = d(y, x) = 0 implies x = y.

(iii) d(x, y) = d(x, z) + d(z, y) for all x, y, z X.

Then d is called dislocated metric(or simply d-metric) on X.

Definition 2.2 A sequence $\{x_n\}$ in a d-metric space (X, d) is called a Cauchy sequence if for given > 0, there corresponds n_0 N such that for all m, n_0 , we have $d(x_m, x_n) < .$

Definition 2.3 A sequence in d-metric space converges with respect to d (or in d) if there exists x = X such that $d(x_n, x) = 0$ as n = 0. In this case, x is called limit of $\{x_n\}$ (in d)and we write $x_n = x$

Definition 2.4 [8] A d-metric space (X, d) is called complete if every Cauchy sequence in it is convergent with respect to d.

Definition 2.5 Let (X, d) be a d-metric space. A map T : X X is called contraction if there exists a number with $0 \le 1$ such that d(T x, T y) = d(x, y).

We state the following lemmas without proof.

Lemma 2.6-Let (X, d) be a d-metric space. If T : X X is a contraction function, then $\{T_n(x_0)\}$ is a Cauchy sequence for each $x_0 = X$.

Lemma 2.7 -Limits in a d-metric space are unique.

Definition 2.8 Let A and S be mappings from a metric space (X, d) into itself. Then, A and S are said to be weakly compatible if they commute at their coincident point; that is, Ax = Sx for some x X implies ASx = SAx.

Theorem 2.9 Let (X, d) be a complete d-metric space and let T : X X be a contraction mapping, then T has a unique fixed point.

III. MAIN RESULTS

Theorem 3.1- Let (X, d) be a complete d -metric space. Let E, F, G and H are four self maps of X, satisfying the following condition –

(i) $H(X) \subseteq E(X)$ and $G(X) \subseteq F(X)$

(ii) The pair (G, E) and (H, F) are weakly compatible and (iii) $d(G_x, H_y) \le a\{d(E_x, H_y) + d(F_y, G_x)\} + \beta\{d(F_y, H_y) + d(F_y, G_x)\} + \gamma\{d(E_x, F_y)\} + \delta\{d(G_x, F_y)\}$ For all $x, y \in X$ where $\alpha, \beta, \gamma, \delta \ge 0$, $0 \le 3\alpha + 2\beta + \gamma + 2\delta < \frac{1}{2}$

Then *E*, *F*, *G*, *H* have a unique fixed point.

Proof. Using the condition (i), we define sequence $\{x_n\}$ and $\{y_n\}$ in X, then

 $y_n = Gx_n = Fx_{n+1}$ and $y_{n+1} = Hx_{n+1} = Ex_{n+2}$, n=0,1,2,3,4,....

If $y_n = y_{n+1}$ for some n, then $Fx_{n+1} = Hx_{n+1}$. Therefore x_{n+1} is a coincidence point of

F and H. Also $y_{n+1} = y_{n+2}$ for some n, then $Gx_{n+2} = Ex_{n+2}$. Hence x_{n+2} is a coincidence point of G and Assume that $y_n \neq y_{n+1}$ for all n.

Then By (iii),

$$\begin{aligned} d(y_n, y_{n+1}) &= d(Gx_n, Hx_{n+1}) \\ &\leq \alpha \{ d(Ex_n, Hx_{n+1}) + d(Fx_{n+1}, Gx_n) \} + \beta \{ d(Fx_{n+1}, Hx_{n+1}) + d(Fx_{n+1}, Gx_n) \} + \gamma \{ d(Ex_n, Fx_{n+1}) \} \\ &+ \delta \{ d(Gx_n, Fx_{n+1}) \} \\ &\alpha \{ d(y_{n-1}, y_{n+1}) + d(y_n, y_n) \} + \beta \{ d(y_n, y_{n+1}) + d(y_n, y_n) \} + &\gamma \{ d(y_{n-1}, y_n) \} + \delta \{ d(y_n, y_{n+1}) \} \\ &\leq \alpha \{ [d(y_{n-1}, y_n) + d(y_n, y_{n+1})] + [d(y_n, y_{n-1}) + d(y_{n-1}, y_n) \} \\ &+ &\beta \{ d(y_n, y_{n+1}) + [d(y_n, y_{n-1}) + d(y_n, y_{n-1})] \} \\ &+ &\delta \{ d(y_n, y_n) \} \\ &+ &\delta \{ d$$

$$d(y_{n}, y_{n+1}) \leq \frac{3\alpha + 2\beta + \gamma + 2\delta}{[1 - \alpha - \beta]} d(y_{n-1}, y_{n})$$

$$d(y_n, y_{n+1}) \le S d(y_{n-1}, y_n)$$

Where $S = \frac{3\alpha + 2\beta + \gamma + \delta}{[1 - \alpha - \beta]} < 1$ This shows that, $d(y_n, y_{n+1}) \le S d(y_{n-1}, y_n) \le S^2 d(y_{n-2}, y_{n-1}) \dots \dots \dots \le S^n d(y_0, y_1)$ For every integer p > 0, We have $d(y_n, y_{n+p}) \le d(y_n, y_{n+1}) + d(y_{n+1}, y_{n+2}) + d(y_{n+2}, y_{n+3}) + \dots \dots + d(y_{n+p-1}, y_{n+p})$ $\le (1 + S + S^2 + \dots \dots \dots + S^{p-1}) d(y_n, y_{n+1})$ $\le \frac{S^n}{1 - S} d(y_0, y_1)$ Since $0 < S < 1, S^n \to 0$ as $n \to \infty$

So we get $d(y_n, y_{n+p}) \to 0$. this implies $\{y_n\}$ is a Cauchy sequence in a complete dislocated metric space. So there exist a point $z \in X$ such that $\{y_n\} \to z$.

Therefore, the sub sequences,

 $\{Gx_n\} \to z, \{Fx_{n+1}\} \to z, \{Hx_{n+1}\} \to z, \{Ex_{n+2}\} - z$ Since $H(X) \subseteq E(X)$, then there exist $u \in X$ such that $u \in X$ such that z = Eu. So, $d(Gu, z) = d(Gu, Hx_{n+1})$ $\leq \alpha \{d(Eu, Hx_{n+1}) + d(Gu, Ex_{n+1})\} + \beta \{d(Ex_{n+1}, Hx_{n+1}) + d(Ex_{n+1}, Hx_{n+1})\} + \alpha \{d(Ex_{n+1}, Hx_{n+1})\} + \alpha \{d($

$$\leq \alpha\{d(Eu, Hx_{n+1}) + d(Gu, Fx_{n+1})\} + \beta\{d(Fx_{n+1}, Hx_{n+1}) + d(Fx_{n+1}, Gu)\} + \gamma\{d(Eu, Fx_{n+1})\} + \delta\{d(Gu, Fx_{n+1})\}$$

As $n \to \infty$,

$$\leq \alpha \{ d(z,z) + d(Gu,z) \} + \beta \{ d(z,z) + d(z,Gu) \} + \gamma \{ d(z,z) \} + \delta \{ d(Gu,z) \}$$

 $d(Gu, z) \le 2[\alpha + \beta + \gamma]d(Gu, z) + [\alpha + \beta + \delta]d(Gu, z)$ $d(Gu, z) \le [3\alpha + 3\beta + 2\gamma + \delta]d(Gu, z)$ This is a contradiction, since $[3\alpha + 3\beta + 2\gamma + \delta] < 1$ So we have Gu = Eu = z.

Again, since $G(X) \subseteq F(X)$, there exist a point $v \in X$, such that z = Fvd(z, Hv) = d(Gu, Hv) $\leq \alpha\{d(Eu, Hv) + d(Gu, Fv)\} + \beta\{d(Fv, Hv) + d(Fv, Gu)\} + \gamma\{d(Eu, Fv)\} + \delta\{d(Fv, Gu)\}$ $\leq \alpha \{ d(z, Hv) + d(z, z) \} + \beta \{ d(z, Hv) + d(z, z) \} + \gamma \{ d(z, z) \} + \delta \{ d(z, z) \}$ $d(z, Hv) \le 2[\alpha + \beta + \gamma + \delta]d(z, Hz) + d(z, Hv)[\alpha + \beta]$ $d(z, Hv) \leq [3\alpha + 3\beta + 2\gamma + 2\delta] d(z, Hv)$ This is a contradiction, since $[3\alpha + 3\beta + \gamma + \delta] < 1$. so We have Gu = Hv = Eu = Fv = zSince the pair (G, E) are weakly compatible so by definition GEu = EGu implies Gz = Ez. Now next we show that z is the fixed point of G.if $Gz \neq z$, then d(Gz, z) = d(Gz, Hv) $\leq \alpha \{ d(Gz, z) + d(Gz, Fv) \} + \beta \{ d(z, z) + d(z, Gz) \} + \gamma \{ d(Gz, z) \} + \delta \{ d(z, Gz) \}$ $\alpha\{d(Gz, z) + d(Gz, z)\} + \beta\{d(z, z) + d(z, Gz)\} + \gamma\{d(Gz, z)\} + \delta\{d(z, Gz)\}$ $d(Gz, z) \leq [2\alpha + 3\beta + \gamma + \delta]d(z, Gz)$ Which is a contradiction, So we have Gz = zThis implies that Gz = Ez = z. Similarly we can show that Hz = Fz = z. Hence Gz = Ez = Hz = Fz = z. This show that z is the common fixed point of the mapping E, F, G, H. **Uniqueness** – Let $\mathbf{u} \neq \mathbf{v}$ be two common fixed point of the mapping E,F,G,H. then We have, d(u, v) = d(Gu, Hv) $\alpha\{d(Eu, Hv) + d(Gu, Fv)\} + \beta\{d(Fv, Hv) + d(Fv, Gu)\} + \gamma\{d(Eu, Fv)\} + \delta\{d(Fv, Gu)\}$ $\leq \alpha \{ d(u,v) + d(u,v) \} + \beta \{ d(v,v) + d(v,u) \} + \gamma \{ d(u,v) \} + \delta \{ d(v,u) \}$

 $[2\alpha + 3\beta + \gamma + \delta]d(u, v)$

Which is contradiction.

This shows that d(u, v) = 0, So we have u = v.

Corollary – Let (X,d) be a complete d-metric space .Let $G, H: X \rightarrow X$ be continuous mapping satisfying,

 $d(G_x, H_y) \leq \alpha \{ d(E_x, H_y) + d(F_y, G_x) \} + \beta \{ d(F_y, H_y) + d(F_y, G_x) \} + \gamma \{ d(E_x, F_y) \} + \delta \{ d(G_x, F_y) \}$ For all $x, y \in X$, where $\alpha, \beta, \gamma, \delta \geq 0, 0 \leq \alpha + 3\beta + \gamma + \delta < 1$. Then G, H have a unique common fixed point.

Proof-If we take E = F = I an identity mapping in the above theorem and follow the similar proof as that in theorem. We can establish this corollary.

REFERENCE

[1]. A. Isufati, Fixed Point Theorem in Dislocated Quasi-Metric Space, Applied Math. Sci., 4(5),(2010), 217-223.

[2]. C. T. Aage and J. N.Salunke, The Results on Fixed Points theorems in Dislocated and Dislocated Quasi-Metric Space, *Applied Math. Sci.*, **2** (59)(2008), 2941-2948.

[3]. C. T. Aage and J. N. Salunke, Some Results of Fixed Point Theorem in Dislocated Quasi-Metric Spaces, *Bull. Marathwada Math. Soc.*, 9 (2),(2008),1-5.

[4]. F. M. Zeyada, G. H. Hassan and M. A. Ahmed, A Generalization of a fixed point theorem due to Hitzler and Seda in dislocated quasi-metric spaces, *The Arabian J. Sci. Engg.*, **31**(1A)(2006), 111-114.

[5]. G. Jungck and B.E. Rhoades, Fixed Points For Set Valued Functions without Continuity, *Indian J. Pure Appl. Math.*, **29**(3)(1998), 227-238.

[6]. K. Jha, K. P. R. Rao and D. Panthi, A Common Fixed Point Theorem For Four Mappings in Dislocated Quasi- Metric Space, *Int. J. Math. Sci. Engg. Appls.*, **6**(1) (2012), 417-424.

[7]. K. Jha, and D. Panthi, A Common Fixed Point Theorem in Dislocated Metric Space, *Applied Mathematical Sciences*, Vol. 6, 2012, no.91,4497-4503.

[8]. K. P. R. Rao and P. Rangaswamy, Common Fixed Point Theorem for Four Mappings in Dislocated Quasi-metric Space, *The Nepali Math. Sci. Report*, **30**(1-2), 2010, 70-75.

[9]. P. Hitzler and A. K. Seda, Dislocated Topologies, J. Electr. Engg., 51(12/s),(2000), 3-7.

[10]. P. Hitzler, Generalized Metrics and Topology in Logic Programming Semantics, Ph.D. Thesis, National University of Ireland, (University College, Cork), 2001.

[11]. R. Shrivastava, Z. K. Ansari and M. Sharma, Some Results on Fixed Points in Dislocated and Dislocated Quasi-Metric Spaces, J. Advance Studies in Topology, 3(1)(2012), 25-31.

[12]. S. K. Vats, Weakly Compatible Maps in Metric Spaces, J. Indian Math. Soc., 69 (1-4), (2002), 139-143.